Applying Cancer Research to Algae Production

January 20, 2011

If metabolic disruption (MDT) is truly successful, it will be able to interrupt metabolic strategies used to regulate a cell’s energy consumption, production and storage. A cell that is dividing will have a different energy level than one that is not, and will use an alternative metabolic strategy, according to Viral Genetics, a biotechnology research company. And “the way a cell metabolizes its sources of energy appears to determine whether it will survive the most common treatments for cancer,” chemotherapy and radiation, the company says.

M. Karen Newell-Rogers of Viral Genetics has been working on MDT research, and she recently received $750,000 to develop the technology. The work to this point indicates that when tumor cells’ metabolic strategies are interrupted, the cells can no longer generate energy needed to survive and the reduced energy levels reduce the tumor cells’ ability for repair, “resulting in a greater sensitivity to chemotherapy and radiation.”

The disruptive agents used to this point are comprised of pharmaceutical compositions that interfere with high rate glycolysis and fatty acid oxidation. The DCA, or dichloracetate, sends a message to the cells that nutrient reserves are full and also interferes with an enzyme that triggers a switch in a cell to fatty acid oxidation in times of starvation. Viral Genetics is now venturing into another uber-important realm: biofuels. The company has launched VG Energy, to put the MDT approach to use in algae-based biofuels. The goal is to increase lipid production by “disrupting” the metabolic strategies of the algal cells. 

Advertisement

Advertisement

—Luke Geiver

Advertisement

Advertisement

Upcoming Events

Sign up for our e-newsletter!

Advertisement

Advertisement