New research could make turning waste cooking oil into biofuel easier and quicker

SOURCE: De Montfort University Leicester

February 15, 2024

BY De Montfort University Leicester

Researchers at De Montfort University Leicester (DMU) have pioneered a new manufacturing process which could make the creation of biofuel from waste cooking oil faster and more efficient.

Professor Katherine Huddersman, Rawaz Ahmed, Saana Rashid, and Ketan Ruperalia, all based in a team of experts from DMU’s Faculty of Health and Life Sciences, have created a new fibrous mesh-based catalyst which drives the reaction that separates vegetable oil and animal fats into biofuel and glycerol.

This new method avoids many of the issues found in traditional production methods. Although sodium hydroxide and potassium hydroxide catalysts are cheap and widely available, they react with the free fatty acids in the oil to create soap, and settle in the glycerol, needing to be removed. Metal oxide catalysts are powders and are difficult to handle, needing to be filtered out at the end of the process.

Advertisement

Waste cooking oil often contains higher amounts of free fatty acids than fresh oil, which generates more soap, hindering the reaction further.

The fibrous-mesh catalyst, lacking any sodium, creates no soap. It has a large surface area, can work continuously, and can be regenerated for repeated use. Overall production time is quicker and it can be used at lower temperatures, making the process more energy efficient.

This means biofuel can be manufactured in larger quantities, with immediate potential applications in many industries, particularly shipping. Glycerol also has a range of applications in the food, drugs, cosmetics, and packing materials industries.

Advertisement

 The research has made the cover of Energy Advances, a multi-disciplinary journal featuring cutting-edge science at the forefront of energy technology. The researchers are now focusing on perfecting the regeneration process.

 Professor Huddersman said: “We are delighted that our fibrous polyacrylonitrile catalyst has shown to be very successful in transesterification reactions to produce biodiesel.

 “This is the first use of a mesh being used in this way, and opens up uses for the catalyst in a wide range of other acid/base chemical reactions to make a wide range of compounds used in pharmaceutics and the chemical industry in general.”

 

Related Stories

U.S. operatable biofuels capacity increased slightly in January, with gains for ethanol, according to the U.S. EIA’s Monthly Biofuels Capacity and Feedstock Update, released March 31. Feedstock consumption was down when compared to December.

Read More

U.S. farmers are expected to plant 83.5 million acres of soybeans in 2025, down 4% when compared to last year, according to the USDA National Agricultural Statistics Service’s annual Prospective Plantings report, released March 31.

Read More

ADM and Mitsubishi Corp. on March 27 announced the signing of a non-binding memorandum of understanding (MOU) to form a strategic alliance to explore potential areas of future collaboration across the agriculture value chain.

Read More

China’s exports of used cooking oil (UCO) reached a record high in 2024 but fell sharply in December after the Chinese government eliminated the 13% export tax rebate for UCO, according to a report filed with the USDA.

Read More

Ash Creek Renewables, a portfolio company of Tailwater Capital LLC, on March 20 announced it has secured exclusive licensing rights from Montana State University for a new high-performance camelina seed variety.

Read More

Upcoming Events

Sign up for our e-newsletter!

Advertisement

Advertisement